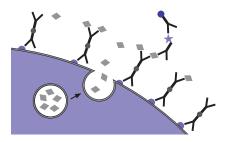


IL-5 Secretion Assay – Cell Enrichment and Detection Kit (PE)

human


For 50 tests with 10⁷ cells

Order no. 130-091-622

Miltenyi Biotec B.V. & Co. KG

Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany Phone +49 2204 8306-0, Fax +49 2204 85197 macsde@miltenyi.com, www.miltenyibiotec.com

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for diagnostic or therapeutic use.

Index

Index

- 1. Description
 - 1.1 Principle of the IL-5 Secretion Assay
 - 1.2 Background and product applications
 - 1.3 Reagent and instrument requirements
- 2. Protocol overview
- Experimental set-up
 - 3.1 Controls
 - 3.2 Kinetics of restimulation and proposed time schedule
 - 3.3 Counterstaining of cytokine-secreting cells
 - 3.4 Two color cytokine analysis
 - 3.5 Combination with peptide-MHC tetramer staining
 - 3.6 Detection without prior enrichment
- 4. Protocol for the IL-5 Secretion Assay
 - 4.1 Cell preparation
 - 4.2 (Antigen-specific) in vitro stimulation
 - 4.3 Cytokine Secretion Assay
 - 4.4 Magnetic labeling
 - 4.5 Magnetic separation
- Detection and analysis of IL-5-secreting T cells
- References
- Appendix
 - A: Flask and dish sizes for stimulation

Detection and enrichment of cytokine-secreting cells from

1. Description

Components 1 mL IL-5 Catch Reagent: anti-IL-5 monoclonal

antibody (rat IgG2a) conjugated to cell surface specific monoclonal antibody (mouse IgG2a).

1 mL IL-5 Detection Antibody: anti-IL-5 monoclonal antibody (rat IgG2a) conjugated to PE

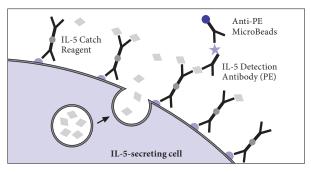
(R-phycoerythrin).1 mL Anti-PE MicroBeads: colloidal super-

paramagnetic MicroBeads conjugated monoclonal mouse anti-PE antibody (mouse IgG1). For 50 tests with 107 cells.

IL-5 Catch Reagent and IL-5 Detection Antibody Product format

are supplied in a solution containing 0.1% gelatine and 0.05% sodium azide. Anti-PE MicroBeads are supplied as a suspension containing 0.1% gelatine

and 0.05% sodium azide.


Store protected from light at 4-8 °C. Do not freeze. Storage

The expiration dates are indicated on the vial labels.

1.1 Principle of the IL-5 Secretion Assay

Antigen-specific T cells are analyzed and isolated using the IL-5 Secretion Assay starting from whole blood, PBMCs or other leukocyte containing single-cell preparations. The cells are restimulated for

1. Description 1. Description

a short period of time with specific peptide, protein or other antigen preparations.

Subsequently, an IL-5-specific **Catch Reagent** is attached to the cell surface of all leukocytes. The cells are then incubated for a short time at 37 °C to allow cytokine secretion. The secreted IL-5 binds to the IL-5 Catch Reagent on the positive, secreting cells. These cells are subsequently labeled with a second IL-5-specific antibody, the **IL-5 Detection Antibody** conjugated to R-phycoerythrin (PE) for sensitive detection by flow cytometry.

The IL-5-secreting cells can now be magnetically labeled with **Anti-PE MicroBeads** and enriched over a MACS Column which is placed in the magnetic field of a MACS Separator. The magnetically labeled cells are retained in the MACS Column while the unlabeled cells run through. After the column has been removed from the magnetic field,

the magnetically retained cells can be eluted as positively selected cell fraction, enriched for cytokine-secreting cells. The cells can now be used for cell culture or analysis. Since viable cells are analyzed, non-specific background can be minimized by dead cell exclusion. This provides highest sensitivity of analysis.

1.2 Background and product applications

The IL-5 Secretion Assay - Cell Enrichment and Detection Kit is designed for the detection, isolation and analysis of viable IL-5-secreting leukocytes. It is specially developed for the **detection and isolation of antigen-specific T cells**. After restimulation with specific antigen *in vitro* secretion of IL-5 is induced.

IL-5 (interleukin 5) is a cytokine predominantly secreted by $\mathrm{CD4}^+$ T cells. It is involved in a range of allergic reactions and mediates immune reactions against parasites. IL-5 also acts on other cell types, like B cells.

Quantitative analysis of antigen-specific T cell populations can provide important information on the natural course of immune responses. MACS enrichment of the antigen-specific T cells increases the sensitivity of analysis, allowing detection of frequencies as low as one in a million cells.

The MACS enrichment also enables further functional characterization of the antigen-specific cells and downstream experiments, as well as the expansion of antigen-specific cells allowing research on potential future immunotherapeutic applications.

4 140-001-222.02 140-001-222.02

1. Description 1. Description

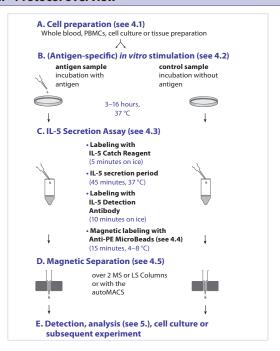
Examples of applications

- Detection and enrichment of viable IL-5-secreting leukocytes.
- Detection and enrichment of IL-5-secreting, antigen-specific T cells for enumeration and phenotypic analysis as well as for expansion and functional characterization.
- Monitoring and analysis of antigen-specific T cell immunity, e.g. in infection, autoimmunity, cancer, allergy or alloreactivity.
- Isolation and expansion of antigen-specific T cells.
- Enrichment and analysis of IL-5-secreting cells for determination of functional antigens in disease and for T cell receptor (TCR) epitope mapping.
- Analysis or cloning of TCR repertoire of antigen-specific T cells.

1.3 Reagent and instrument requirements

- Buffer (degassed): Prepare a solution containing PBS (phosphate buffered saline) pH 7.2, 0.5% BSA and 2 mM EDTA by diluting MACS BSA Stock Solution (# 130-091-376) 1:20 with autoMACS™ Rinsing Solution (# 130-091-222). Keep buffer cold (4-8 °C).
- Culture medium, e.g. RPMI 1640 (# 130-091-440) containing 5% human serum, like autologous or AB serum (do not use BSA or FCS because of non-specific stimulation!).
- (Optinal) CytoStim (# 130-092-173), reagent for stimulation of T cells.

- Propidium iodide (PI) or 7-AAD for flow cytometric exclusion of dead cells. For cell fixation and flow cytometric exclusion of dead cells, the Fixation and Dead Cell Discrimination Kit (#130-091-163) is recommended.
- (Optional) Staining reagents such as CD4-FITC (# 130-080- 501) and CD14-PerCPTM.
- MACS Columns and MACS Separators:


Column	max. number of labeled cells	max. number of total cells	Separator
MS	10 ⁷	2×10 ⁸	MiniMACS, OctoMACS, VarioMACS, SuperMACS
LS	108	2×10 ⁹	MidiMACS, QuadroMACS, VarioMACS, SuperMACS
autoMACS	2×10 ⁸	4×109	autoMACS

- ▲ Note: Column adapters are required to insert certain columns into VarioMACS™ Separator or SuperMACS™ Separator. For details, see MACS Separator data sheets.
- Refrigerated centrifuge (4–8 °C).
- Rotation device for tubes: MACSmix[™] tube rotator (# 130-090-753).
- (Optional) Pre-Separation Filters (# 130-041-407).

6 140-001-222.02 140-001-222.02 7

2. Protocol overview 3. Experimental set-up

2. Protocol overview

3. Experimental set-up

3.1 Controls

Negative control

For accurate detection of IL-5-secreting antigen-specific cells, a negative control sample should always be included. This will provide information about IL-5 secretion unrelated to the specific antigen-stimulation, but e.g. due to ongoing *in vivo* immune responses. The control sample should be treated exactly the same as the antigen-stimulated sample except for the addition of antigen, or by using a control antigen.

Positive control

When setting up a new experiment, it is recommended to include a positive control. As a positive control, a sample stimulated with CytoStim (# 130-092-173) 20 $\mu L/mL$ for 1–3 hours, or the superantigen Staphylococcal Enterotoxin B (Sigma) 1 $\mu g/mL$ for 3–16 hours, may be included in the experiment.

3.2 Kinetics of restimulation and proposed time schedule

Peptides

Upon stimulation with peptide, the cells can be analyzed for IL-5 secretion 3-6 hours later.

It is possible to prepare the cells first and take them into culture overnight, but without adding the antigen (see 4.2 step 2.). Peptide is then added the next morning for 3 hours of stimulation, directly followed by the IL-5 Secretion Assay.

8 140-001-222.02 140-001-222.02

3. Experimental set-up 3. Experimental set-up

Proteins

Upon stimulation with protein, the cells can be analyzed for IL-5 secretion 6-16 hours later.

It is possible to start the stimulation of the cells late in the afternoon, and to perform the IL-5 Secretion Assay the following morning.

Co-stimulation

The addition of co-stimulatory agents like CD28 or CD49d antibody may enhance the response to the antigen. If co-stimulatory agents are added to the antigen sample, they also have to be included in the control sample.

3.3 Counterstaining of cytokine-secreting cells

The IL-5-secreting cells are stained with PE-conjugated IL-5 Detection Antibodies. To identify cells of interest, counterstaining for T cells with e.g. CD4-FITC (# 130-080-501) is important.

- ▲ Do **not use** tandem conjugates of phycoerythrin, like Cy-Chrome (Pharmingen), PE-Cy5 (Serotec), ECD, PC5 (Coulter-Immunotech) etc., they may also be recognized by the Anti-PE MicroBeads.
- ▲ Upon activation of T cells, TCR and some associated molecules, like CD3, might be down-regulated.
- ▲ The samples should be stained with propidium iodide (PI) or 7-AAD prior to acquisition, to exclude dead cells from analysis. This will reduce non-specific background staining and increase sensitivity.
- \blacktriangle For optimal sensitivity, we recommend labeling of undesired non-T cells such as monocytes with antibodies conjugated to PerCPTM, e.g. CD14-PerCPTM. These cells can then be excluded together with PI stained dead cells by gating.

3.4 Two color cytokine analysis

IL-5-secreting cells can be analyzed simultaneously for IFN- γ , IL-2, IL-10 or TNF- α production by two color cytokine analysis combining the IL-5 Secretion Assay with the IFN- γ Secretion Assay - Detection Kit (APC) (# 130-090-762) or IFN- γ Secretion Assay - Detection Kit (FITC) (# 130-090-433), IL-2 Secretion Assay - Detection Kit (APC) (# 130-090-763), IL-10 Secretion Assay - Detection Kit (APC) (# 130-090-761), or TNF- α Secretion Assay - Detection Kit (APC) (# 130-091-267). Detailed protocols are included in the data sheets of the Cytokine Secretion Assay - Detection Kits (APC) and are available from our website www. miltenyibiotec.com/protocols.

3.5 Combination with peptide-MHC tetramer staining

IL-5-secreting cells can be analyzed simultaneously for peptide-MHC tetramers by combining the IL-5 Secretion Assay (PE) with APC-conjugated peptide-MHC tetramers. For combination with PE-conjugated peptide-MHC tetramers the IL-5 Secretion Assay - Detection Kit (APC) (# 130-091-624) is available. Detailed recommendations for the experimental setup and the procedure are included in the data sheet of the Cytokine Secretion Assay - Detection Kit (APC) and are available from our website www.miltenyibiotec.com/protocols.

3.6 Detection without prior enrichment

(Optional) If the sample contains more than 0.01–0.1% of IL-5-secreting cells, you may be able to analyze IL-5-secreting cells without prior enrichment (see also: IL-5 Secretion Assay - Detection Kit (PE), # 130-

10 140-901-22202 140-901-22202 11

091-623). The assay can also be performed directly starting from whole blood. A detailed protocol is included in the data sheet of the IL-5 Secretion Assay - Detection Kit (PE) and is available from our website www.miltenyibiotec.com/protocols.

4. Protocol for the IL-5 Secretion Assay

4.1 Cell preparation

For the detection and isolation of cytokine-secreting cells, best results are achieved by starting the assay with fresh PBMCs, or other leukocyte containing single-cell preparations from tissues or cell lines. Alternatively, frozen cell preparations can be used.

- ▲ Note: PBMCs may be stored over night. The cells should be resuspended and incubated in culture medium as described in 4.2 step 2., but without addition of antigen. The antigen is then added to the culture on the next day.
- ▲ Note: Remove platelets after density gradient separation. Resuspend cell pellet, fill tube with buffer and mix. Centrifuge at 200×g for 10–15 minutes at 20 $\,^{\circ}\text{C}.$ Carefully

Special protocols for whole blood: You can start the IL-5 Secretion Assay directly from whole blood. For details on the procedure, see 7. Appendix B: Detection and enrichment of cytokine-secreting cells from human whole blood. This special protocol is also available from our website www. miltenyibiotec.com/protocols.

4.2 (Antigen-specific) in vitro stimulation

- ▲ Always include a negative control in the experiment. A positive control may also be included (see 3.1).
- ▲ Do **not** use media containing any **non-human** proteins, like BSA or FCS because of non-specific stimulation.

Protocol for in vitro stimulation

- Wash cells by adding medium, centrifuge at 300×g for 10 minutes.
- Resuspend cells in culture medium, containing 5% human serum, adjust to 107 cells/mL and 5×106 cells/cm2 (see 7. Appendix A: Flask and dish sizes for stimulation).
- 3. Add antigen or control reagent:

peptide: 3-6 hours at 37 °C, 5-7% CO₂, e.g. 1-10 μg/mL protein: 6–16 hours at 37 °C, 5–7% CO₂, e.g. 10 μg/mL CytoStim: 1–3 hours at 37 °C, 5–7% CO₂, 20 μL/mL SEB: 3–16 hours at 37 °C, 5–7% CO₂, e.g. 1 μg/mL

For comparison of different experiments, the stimulation time should always be the same (see 3.2).

Collect cells carefully by using a cell scraper, or by pipetting up and down when working with smaller volumes. Rinse the dish with cold buffer. Check microscopically for any remaining cells, if necessary, rinse the dish again.

4.3 Cytokine Secretion Assay

General considerations

▲ The assay is optimized for cell samples containing < 5% of total IL-5-secreting cells. If \geq 5% of IL-5-secreting cells are expected, it is necessary to dilute the cells further during the cytokine secretion period, and therefore a larger test tube will be needed (see table below).

140-001-222.02 140-001-222.02 12 13

4. Protocol for the IL-5 Secretion Assay

The dilution prevents non-specific staining of cells not secreting IL-5 during this period.

- ▲ For each test with 10⁷ total cells, prepare: 100 mL of cold buffer (4-8 °C)
 - $100~\mu L$ of cold medium (4–8 °C)
 - 10 mL (or 100 mL; see table below) of warm medium (37 °C).
- ▲ Work fast, keep the cells cold, use pre-cooled solutions which will prevent capping of antibodies on the cell surface and a non-specific cell labeling (exception: warm medium during secretion period).
- ▲ Volumes shown below are for 10⁷ total cells. When working with fewer than 107 cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes, accordingly (e.g. for 2×107 total cells, use twice the volume of all indicated reagent volumes and total volumes).
- ▲ Do not remove supernatant by decanting. This will lead to cell loss and incorrect incubation volumes. Pipette off or aspirate supernatant.
- ▲ Dead cells may bind non-specifically to MACS MicroBeads or antibodies. Therefore, when working with cell preparations containing large amounts of dead cells, they should be removed before starting the IL-5 Secretion Assay, e.g. by density gradient centrifugation or by using the Dead Cell Removal Kit (# 130-090-101).

4. Protocol for the IL-5 Secretion Assay

- Labeling cells with IL-5 Catch Reagent Use 107 total cells in a 15 mL closable tube per sample.
 - ▲ Note: For larger cell numbers, scale up all volumes accordingly. For fewer than 10⁷
- 2. Wash cells by adding 10 mL of cold buffer, centrifuge at 300×g for 10 minutes at 4–8 °C, pipette off supernatant completely.
 - ▲ Note: Do not remove supernatant by decanting. This will lead to cell loss and incorrect incubation volumes.
- 3. Resuspend cell pellet in 80 μ L of **cold medium** per 10⁷ total cells.
- Add 20 μL of IL-5 Catch Reagent per 10^7 total cells, mix well and incubate for 5 minutes on ice.

IL-5 secretion period

Add warm (37 °C) medium to dilute the cells according to the following table:

Expected number of IL-5-secreting cells		Amount of medium to add per 10 ⁷ total cells
< 5 %	10 ⁶ cells/mL	10 mL
≥ 5 %	≤ 10 ⁵ cells/mL	100 mL

▲ Note: For frequencies of cytokine-secreting cells >> 20% the cells need to be further diluted, e.g. by a factor of 5

14 15

- Incubate cells in closed tube for 45 minutes at 37 °C under slow continuous rotation using the MACSmix™ tube rotator (# 130-090-753), or turn tube every 5 minutes to resuspend settled cells.
 - ▲ Note: During this step it is crucial to prevent contact of cells to avoid cross contamination with cytokines.

Labeling cells with IL-5 Detection Antibody

- 1. Put the tube on ice.
- Wash the cells by filling up the tube with cold buffer, and centrifuge at 300×g for 10 minutes at 4-8 °C. Pipette off supernatant completely.
 - ▲ Note: If the volume of the cell suspension was higher than the volume of added buffer, repeat wash step.
- 3. Resuspend cell pellet in 80 μ L of **cold buffer** per 10⁷ total cells.
- 4. Add 20 μL of **IL-5 Detection Antibody (PE)** per 10⁷ total cells.
- 5. (Optional) Add additional staining reagents, e.g. 10 μL of CD4-FITC (# 130-080-501) and CD14-PerCPTM.
- 6. Mix well and incubate for 10 minutes on ice.
- Wash cells by adding 10 mL of cold buffer, centrifuge at 300×g for 10 minutes at 4–8 °C, pipette off supernatant.

4.4 Magnetic labeling

Magnetic labeling with Anti-PE MicroBeads

- 1. Resuspend cell pellet in 80 μ L of cold buffer per 10⁷ total cells.
- Add 20 μL of Anti-PE MicroBeads per 10⁷ total cells, mix well and incubate for 15 minutes at 4–8 °C.
 - ▲ Note: Incubate in refrigerator at 4–8 °C, do not work on ice during this step.
- Wash cells by adding 10 mL of cold buffer, centrifuge at 300×g for 10 minutes at 4-8 °C. Pipette off supernatant.
- Resuspend cell pellet in 500 μL of cold buffer. For higher cell numbers than 5×10⁷use a dilution of 10⁸ cells/mL.
- (Optional) Take an aliquot for flow cytometric analysis and cell count of the fraction before enrichment.
- 6. Proceed to magnetic separation (see 4.5).

4.5 Magnetic separation

Magnetic separation using MS or LS Columns

- ▲ Choose an appropriate MACS Column and MACS Separator according to the number of total cells (see table in 1.3).
- ▲ When enriching antigen-specific T cells, always perform two consecutive column runs to achieve best results.

16 140-001-222.02 140-001-222.02 17

4. Protocol for the IL-5 Secretion Assay

4. Protocol for the IL-5 Secretion Assay

- 1. Prepare **two columns** per sample by rinsing with cold buffer: MS: $500~\mu L$ LS Column: 3~mL and discard effluent.
- Place the first column into the magnetic field of a MACS Separator (use column adapter with VarioMACS or SuperMACS Separator).
- 3. (Optional) Pass the cells through Pre-Separation Filters (# 130-041-407) to remove clumps.
- 4. Apply cell suspension onto the column.
- Collect unlabeled cells which pass through and wash with appropriate amount of cold buffer. Perform washing steps by adding buffer successively once the column reservoir is empty.

MS: 3×500 μL LS: 3×3 mL

Collect total effluent. This is the unlabeled cell fraction.

- Remove the first column from separator, place the second column into the separator, and put the first column on top of the second one.
- Pipette appropriate amount of cold buffer onto the first column. Immediately flush out the fraction with the magnetically labeled cells by firmly applying the plunger, supplied with the column. directly onto the second column.

MS: 1 mL

LS: 5 mL

 Collect unlabeled cells that pass through and wash with appropriate amount of cold buffer. Perform washing steps by adding buffer successively once the column reservoir is empty.

MS: 3×500 μL

LS: 3×3 mL

- Remove the second column from separator, place the column on a suitable collection tube.
- 10. Pipette appropriate amount of cold buffer onto the column. Immediately flush out the fraction with the magnetically labeled cells by firmly applying the plunger, supplied with the column. $MS: 500~\mu L \hspace{1cm} LS: 5~mL$
 - ▲ Note: For subsequent cell culture, the cells can also be eluted with medium. If part of the cells are analyzed by flow cytometry, the medium should **not contain** phenol red.
- 11. Proceed to analysis (see section 5.), cell culture or other subsequent experiment.

Magnetic separation using the autoMACS $^{\!\mathsf{TM}}$ Separator

- 1. Prepare and prime autoMACS Separator.
- (Optional) Pass cells through Pre-Separation Filters (# 130-041-407) to remove clumps.
- Place tube containing magnetically labeled cells in autoMACS Separator. Choose separation program "Posseld". Collect the separated fractions from outlet port "pos2".
- Proceed to analysis (see section 5.), cell culture or other subsequent experiment.

18 14001-22202 14001-22202 19

5. Detection and analysis of IL-5-secreting T cells

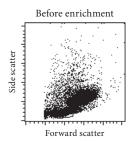
 \blacktriangle Add propidium iodide (PI) or 7-AAD to a final concentration of 0.5 µg/mL **just prior** to acquisition for exclusion of dead cells from flow cytometric analysis. Incubating with PI for longer periods will affect the viability of the cells.

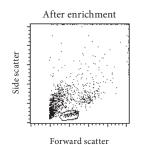
Do not fix the cells when using PI or 7-AAD.

- ▲ For optimized sensitivity, an appropriate number of viable cells has to be acquired from the antigen stimulated sample as well as from the control sample.
- Acquire 2×10⁵ viable cells from the fraction before enrichment (see 4.4 step 5.).
- For enumeration of low frequent IL-5-secreting cells, acquire all of the positive fraction. For preparative purposes, acquire an aliquot of the positive fraction to determine the performance of the cell enrichment

To illustrate the analysis, we describe the detection of IL-5-secreting T cells using the IL-5 Secretion Assay. The detailed description, including how to set gates, should serve as a model for the analysis of your own sample.

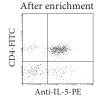
- 1. 10^7 human PBMCs were restimulated for 1 hour with and without CytoStim (# 130-092-173).
- 2. The IL-5 Secretion Assay was performed on the stimulated and the unstimulated sample.


- 3. Counterstaining of T cells was performed using CD4-FITC.
- 4. Dead cells were stained with propidium iodide (PI), which was added just prior to flow cytometric analysis to a final concentration of $0.5~\mu g/mL$.
- 200,000 viable cells of the fractions before enrichment and the complete enriched fractions were acquired by flow cytometry, from the stimulated and the unstimulated samples.
- A lymphocyte gate based on forward and side scatter (FSC/ SSC) properties was activated prior to further gating to exclude monocytes and debris (see A.).
- Dead cells were excluded according to PI-staining in a fluorescence 2 (PE) versus fluorescence 3 plot (see B.).
- The dead cell exclusion is crucial for the analysis of rare antigenspecific T cells, as dead cells may bind non-specifically to antibodies or MicroBeads. This could lead to false positive events.
- Analysis of secreted IL-5 (PE) versus CD4-FITC staining of viable lymphocytes is displayed (see C.).

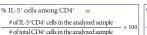

20 140-001-222.02 140-001-222.02 21

5. Detection and analysis of IL-5-secreting T cells

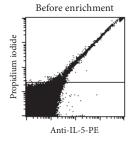
5. Detection and analysis of IL-5-secreting T cells

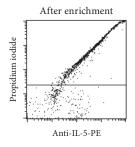

A. Lymphocyte gate in the forward versus side scatter plot

C. IL-5-secreting CD4 $^{\scriptscriptstyle +}$ T cells after stimulation with CytoStim Sample stimulated with CytoStim



0.083% of the total CD4 $^{\scriptscriptstyle +}$ T cell population secrete IL-5 (see formula below).


The IL-5-secreting CD4⁺ T cells have been enriched to 59.8%.


266 IL-5⁺CD4⁺ T cells were enriched from 10° CD4⁺ cells (= 0.040%; see formula below).

B. Dead cell exclusion in FL-2 versus FL-3

Unstimulated control sample Before enrichment

≤ 0.008% of the total CD4⁺ T cell population secrete IL-5.

After enrichment

 ≤ 1 IL-5+CD4+ T cells were enriched from 10^6 CD4+cells ($\leq 0.0001\%$).

6. References 7. Appendix

6. References

- Manz, R; Assenmacher, M; Pflüger, E; Miltenyi, S; Radbruch, A (1995) Analysis and Sorting of Live cells According to Secreted Molecules Relocated to a Cell-Surface Affinity Matrix. Proc. Natl. Acad. Sci. USA 92: 1921-1925. [139]
- Assenmacher, M; Löhning, M; Scheffold, A; Manz, RA; Schmitz, J; Radbruch, A. (1998) Sequential production of IL-2, IFN-y and IL-10 by individual staphylococcal enterotoxin B-activated T helper lymphocytes. Eur. J. Immunol. 28: 1534-1543. [483]
- Brosterhus, H; Brings, S; Leyendeckers, H; Manz, RA; Miltenyi, S; Radbruch, A; Assenmacher, M; Schmitz, J (1999) Enrichment and detection of live antigen-specific CD4* and CD8* T cells based on cytokine secretion. Eur. J. Immunol. 29: 4053-4059.
- Oelke, M; Moehrle, U; Chen, JL; Behringer, D; Cerundolo, V; Lindemann, A; Mackensen, A (2000) Generation and purification of CD8* Melan-A-Specific Cytotoxic T Lymphocytes for Adoptive Transfer in Tumor Immunotherapy. Clin. Cancer Res. 6: 1997-2005. [663]
- Oelke, M; Kurokawa,T; Hentrich, I.; Behringer, D; Cerundolo, V; Lindemann, A; Mackensen, A (2000) Functional Characterization of CD8* Antigen-Specific Cytotoxic T Lymphocytes after Enrichment Based on Cytokine Secretion: Comparison with the MHC-Tetramer Technology. Scand. J. Immunol. 52. 544-549. [970]
- Bickham, K; Münz, C; Tsang, ML; Larsson, M; Fonteneau, J-F; Bhardwaj, N; Steinmann, R (2001) EBNA1-specific CD4*T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. J. Clin. Invest. 107: 121-130. [1035]
- Pittet, MJ; Zippelius, A; Speiser, DE; Assenmacher, M; Guillaume, P; Valmori, D; Lienard, D; Lejeune, F; Cerottini, JC; Romero, P (2001) Ex vivo IFN-γ secretion by circulating CD8 T lymphocytes: Implications of a novel approach for T cell monitoring in infectious malignant diseases. J. Immunol. 166: 7634-7640. [1037]
- Becker, C; Pohla, H; Frankenberger, F; Schüler, T; Assenmacher, M; Schendel, DJ; Blankenstein, T (2001) Adoptive tumor therapy with T lymphocytes enriched through an IFN-7 capture assay. Nature Medicine 7, 10: 1159-1162. [1207]

For further information visit our website www.miltenyibiotec.com.

7. Appendix:

A: Flask and dish sizes for stimulation

For *in vitro* stimulation (see 4.2 step 2.) the cells should be resuspended in culture medium, containing 5% of human serum, at 10^7 cells/mL and 5×10^6 cells/cm². Both the dilution and the cell density are important to assure optimum stimulation.

The following table lists culture plate, dish and flask sizes suitable for different cell numbers. It also indicates the appropriate amount of medium to add.

total cell number	medium volume culture to add plate		well diameter
0.15×10 ⁷	0.15 mL	96 well	0.64 cm
0.5×10 ⁷	0.5 mL	48 well	1.13 cm
1×10 ⁷	1 mL	24 well	1.6 cm
2×10 ⁷	2 mL	12 well	2.26 cm
5×10 ⁷	5 mL	6 well	3.5 cm
total cell number	medium volume to add	culture dish	dish diameter
4.5×10 ⁷	4.5 mL	small	3.5 cm
10×10 ⁷	10 mL	medium	6 cm
25×10 ⁷	25 mL	large	10 cm
50×10 ⁷	50 mL	extra large	15 cm
total cell number	medium volume to add	culture flask	growth area
12×10 ⁷	12 mL	50 mL	25 cm ²
40×10 ⁷	40 mL	250 mL	75 cm ²
80×10 ⁷	80 mL	720 mL	162 cm ²
120×10 ⁷	120 mL	900 mL	225 cm ²

24 140-001-222.02 140-001-222.02 25

7. Appendix 7. Appendix

B: Detection and enrichment of cytokinesecreting cells from whole blood

- B1. Reagent and instrument requirements
- **B2.** Protocol
 - B 2.1 (Antigen-specific) in vitro stimulation
 - B 2.2 Cytokine Secretion Assay
 - B 2.3 Magnetic labeling
 - **B 2.4** Magnetic separation

The following special protocol can be used in combination with one of the Cytokine Secretion Assay - Cell Enrichment and Detection Kits for human cells.

B 1: Reagent and instrument requirements

Cytokine Secretion Assay Kit, for example:

IFN- γ Secretion Assay - Cell Enrichment and Detection Kit (PE) (# 130-054-201)

IL-2 Secretion Assay - Cell Enrichment and Detection Kit (PE) (# 130-090-487)

IL-4 Secretion Assay - Cell Enrichment and Detection Kit (PE) (# 130-054-101)

IL-5 Secretion Assay - Cell Enrichment and Detection Kit (PE) (# 130-091-622)

IL-10 Secretion Assay - Cell Enrichment and Detection Kit (PE)
(# 130-090-435)

TNF- α Secretion Assay - Cell Enrichment and Detection Kit (PE) (# 130-091-269)

- Anticoagulant: sodium heparin
- Buffer (degassed): Prepare a solution containing PBS (phosphate buffered saline) pH 7.2, 0.5% BSA and 2 mM EDTA by diluting MACS BSA Stock Solution (# 130-091-376) 1:20 with autoMACS^w Rinsing Solution (# 130-091-222). Keep buffer cold (4–8 °C).
- Culture medium, e.g. RPMI 1640 (# 130-091-440) containing 20% of human serum, like autologous serum or AB serum.
 - ▲ Note: Do not use BSA or FCS because of non-specific stimulation.
- (Optinal) CytoStim (# 130-092-173), reagent for stimulation of T cells.
- Erythrocyte lysing solution (1×):
- prepare freshly from 10× stock solution.
- $10 \times$ stock solution: 41.4 g NH₄Cl (1.55 M), 5 g KHCO₃ (100 mM), 1 mL 0.5 M EDTA (1 mM), adjust pH to 7.3, fill up to 500 mL with dd H.O.
 - ▲ Note: Do not use FACS Lysing solution™.
- (Optional) Staining reagents: CD4-FITC (# 130-080-501) or CD8-FITC (# 130-080-601) and CD14-PerCP™.
 - ▲ Note: Do not use tandem conjugates of phycoerythrin, like Cy-Chrome' (PharMingen), PE-Cy5 (Serotec), ECD, PC5 (Coulter-Immunotech) etc., they may also be recognized by the Anti-PE MicroBeads.
 - ▲ Note: Upon activation of T cells, TCR and some associated molecules, like CD3, might be down-regulated.
 - ▲ Note: For optimal sensitivity, we recommend labeling of undesired non-T cells such as monocytes with antibodies conjugated to PerCP™, e.g. CD14-PerCP™. These cells can then be excluded together with PI stained dead cells by gating.

26 140-001-222.02 140-001-222.02 27

7. Appendix 7. Appendix

- Propidium iodide (PI) or 7-AAD for flow cytometric exclusion of dead cells. For cell fixation and flow cytometric exclusion of dead cells, the Fixation and Dead Cell Discrimination Kit (#130-091-163) is recommended.
- MACS Columns and MACS Separators:

Column	max. number of labeled cells	max. number of total cells	Separator
MS	10 ⁷	2×10 ⁸	MiniMACS, OctoMACS, VarioMACS, SuperMACS
autoMACS	2×10 ⁸	4×109	autoMACS

- ▲ Note: Column adapters are required to insert certain columns into VarioMACS Separator or SuperMACS Separator. For details, see MACS Separator data sheets.
- (Optional) Rotation device for tubes: MACSmix[™] tube rotator (#130-090-753)
- (Optional) Pre-Separation Filters (# 130-041-407)

B 2: Protocol

B 2.1 (Antigen-specific) in vitro stimulation

- ▲ The peripheral blood should not be older than 20 hours and should be supplemented with anticoagulant **sodium heparin**. **Do not use EDTA, or ACD**. Lymphocyte activation and secretion of cytokines requires calcium, and is consequently inhibited by chelating anticoagulants.
 - ▲ Note: Whole blood may be stored overnight at room temperature.

- ▲ Always include a **negative control** sample in the experiment. A **positive control** with e.g. CytoStim (# 130-092-173), or Staphylococcal Enterotoxin B (SEB) may be included in the experiment (see also detailed protocol provided with the Cytokine Secretion Assay Kits).
- ▲ Do **not use** media containing any **non-human** proteins, like BSA or FCS because of non-specific stimulation.

Protocol for in vitro stimulation

- Start with 5 mL of fresh, sodium heparinized, human blood (containing about 10⁷ lymphocytes) in a 50 mL conical polypropylene tube.
- 2. Add the antigen or, as a positive control, 1 μ g/mL SEB for 3–16 hours at 37 °C, 5–7% $\rm CO_2$ (for details on the kinetics of cytokine secretion and on concentrations of antigen to add, refer to Cytokine Secretion Assay data sheet, 3.1-3.2).
- A negative control sample, treated exactly the same as the antigenstimulated sample but without addition of antigen, should always be included in the experiment.
- (Optional) Co-stimulatory agents like CD28 and CD49d antibodies may be added.

B 2.2 Cytokine Secretion Assay

▲ This protocol is optimized for cell samples containing < 5% of total cytokine-secreting cells. If \geq 5% of cytokine-secreting cells are expected, it is necessary to dilute the cells further during the cytokine

28 140-001-222.02 140-001-222.02 29

7. Appendix 7. Appendix

secretion period, and therefore a larger test tube will be needed. The dilution avoids non-specific staining of cells not secreting cytokines during this period.

- ▲ For each sample with 5 mL whole blood prepare:
 - 100 mL of cold buffer (4–8 °C)
 - 200 μL of cold medium (4-8 °C)
 - 7 mL of warm medium (37 °C)
 - 45 mL of **erythrocyte lysing solution** (room temperature).
- ▲ Work fast, keep the cells cold, use pre-cooled solutions which will prevent capping of antibodies on the cell surface and a non-specific cell labeling (exception: warm medium during secretion period and room temperature during lysing step).
- ▲ Do not remove supernatant by decanting. This will lead to cell loss and incorrect incubation volumes. Pipette off or aspirate supernatant.
- ▲ Dead cells may bind non-specifically to MACS MicroBeads or antibodies. Therefore, when working with cell preparations containing large amounts of dead cells, they should be removed before starting the Cytokine Secretion Assay, e.g. by density gradient centrifugation or by using the Dead Cell Removal Kit (# 130-090-101).
- ▲ Higher temperatures and longer incubation times for staining should be avoided. This will lead to non-specific cell labeling.

Lysis of erythrocytes

1. After stimulation add 45 mL of erythrocyte lysing solution to 5 mL whole blood sample.

- 2. Mix gently and incubate for 10 minutes at **room temperature**. Rotate tube continuously using the MACSmix tube rotator (# 130-090-753), or turn tube several times during incubation.
- Centrifuge cells at 300×g for 10 minutes at room temperature, remove supernatant completely.

Labeling cells with Cytokine Catch Reagent

- 1. Resuspend cell pellet in 15 mL of ${
 m cold}$ buffer, and transfer into a 15 mL conical propylene tube.
- Centrifuge at 300×g for 10 minutes at 4-8 °C. Pipette off supernatant completely.
- Resuspend pellet in 160 μL of cold medium.
- Add 40 µL of Cytokine Catch Reagent, mix well and incubate for 5 minutes on ice.

Cytokine secretion period

- 1. Add 7 mL of warm medium (37 °C) to dilute the cells.
 - \blacktriangle Note: For frequencies of cytokine-secreting cells \geq 5% the cells need to be further diluted, e.g. by a factor of 5.
- Incubate cells in a closed tube for 45 minutes at 37 °C under slow continuous rotation using the MACSmix tube rotator, or turn tube every 5 minutes to resuspend settled cells.
 - ▲ Note: During this step it is crucial to prevent contact of cells to avoid cross contamination with cytokines.

30 (46901-22202 (46901-22202 31

7. Appendix 7. Appendix

Labeling cells with Cytokine Detection Antibody

- 1. Put the tube on ice.
- 2. Wash cells by adding 8 mL of **cold buffer**, centrifuge at 300×g for 10 minutes at 4-8 °C. Pipette off supernatant completely.
- 3. Resuspend cell pellet in 160 μL of **cold buffer**.
- Add 40 μL of Cytokine Detection Antibody (PE).
- 5. (Optional) Add additional staining reagents, e.g. 20 μL of CD4-FITC (# 130-080-501) or CD8-FITC (# 130-080-601) and CD14-PerCPTM.
- 6. Mix well and incubate for 10 minutes on ice.
- Wash cells by adding 10 mL of cold buffer, centrifuge at 300×g for 10 minutes at 4-8 °C. Pipette off supernatant completely.

B 2.3 Magnetic labeling

Magnetic labeling with Anti-PE MicroBeads

- 1. Resuspend cell pellet in 160 μL of cold buffer.
- Add 40 μL of Anti-PE-MicroBeads, mix well and incubate for 15 minutes at 4-8 °C.
 - \blacktriangle Note: Incubate in refrigerator at 4–8 °C; do not work on ice during this step.

- Wash cells by adding 10 mL of cold buffer, centrifuge at 300×g for 10 minutes at 4-8 °C. Pipette off supernatant completely.
- Resuspend cell pellet in 500 μL of cold buffer.
- (Optional) Take an aliquot for flow cytometric analysis and cell count of the fraction before enrichment.
- 6. Proceed to magnetic separation.

B 2.4 Magnetic separation

Magnetic separation using MS Columns

- ▲ When enriching antigen-specific T cells, always perform two consecutive MS Columns to achieve best results.
- 1. Prepare two MS Columns per sample by rinsing with 500 μ L cold buffer, discard effluent.
- Place first column into the magnetic field of a MACS Separator (use column adapter with VarioMACS or SuperMACS Separator).
- (Optional) Pass cells through Pre-Separation Filters (# 130-041-407) to remove clumps.
- 4. Apply cell suspension onto the column.
- Collect unlabeled cells which pass through and wash with 3×500 μL of cold buffer. Perform washing steps by adding buffer successively once the column reservoir is empty.
 Collect total effluent. This is the unlabeled cell fraction.

32 140-001-222.02 140-001-222.02 33

7. Appendix 7. Appendix

- 6. Remove first column from separator, place second column into the separator, and put the first column on top of the second one.
- Pipette 1 mL of cold buffer on top of the first column. Immediately flush out the fraction with the magnetically labeled cells by firmly applying the plunger, supplied with the column, directly onto the second column.
- 8. Collect unlabeled cells that pass through and wash with $3\times500~\mu L$ of cold buffer. Perform washing steps by adding buffer successively once the column reservoir is empty.
- Remove second column from separator, place column on a suitable collection tube.
- 10. Pipette 500 μ L of cold buffer on top of the column. Immediately flush out the fraction with the magnetically labeled cells by firmly applying the plunger, supplied with the column.
 - ▲ Note: For subsequent cell culture, the cells can also be eluted with medium. If part of the cells are analysed by flow cytometry, the medium should not contain phenol red.
- Proceed to flow cytometric analysis (see detailed protocol), cell culture or other subsequent experiment.

Magnetic separation using the autoMACS $^{\text{TM}}$ Separator

- 1. Prepare and prime autoMACS Separator.
- (Optional) Pass cells through Pre-Separation Filters (# 130-041-407) to remove clumps.
- Place tube containing magnetically labeled cells in autoMACS Separator. Choose separation program "Posseld". Collect the separated fractions from outlet port "pos2".
- Proceed to flow cytometric analysis (see detailed protocol), cell culture or other subsequent experiment.

34 140-901-222.02 140-901-222.02 35

Refer to www.miltenyibiotec.com for all data sheets and protocols. Miltenyi Biotec provides technical support worldwide. Visit www.miltenyibiotec.com for local Miltenyi Biotec Technical Support contact information.

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

36 140-901-222.02 140-901-222.02 37

Legal notices

Limited product warranty

Miltenyi Biotec B.V. & Co. KG and/or its affiliate(s) warrant this product to be free from material defects in workmanship and materials and to conform substantially with Miltenyi Biotec's published specifications for the product at the time of order, under normal use and conditions in accordance with its applicable documentation, for a period beginning on the date of delivery of the product by Miltenyi Biotec or its authorized distributor and ending on the expiration date of the product's applicable shelf life stated on the product label, packaging or documentation (as applicable) or, in the absence thereof, ONE (1) YEAR from date of delivery ("Product Warranty"). Miltenyi Biotec's Product Warranty is provided subject to the warranty terms as set forth in Miltenyi Biotec's General Terms and Conditions for the Sale of Products and Services available on Miltenyi Biotec's website at www.miltenyibiotec.com, as in effect at the time of order ("Product Warranty"). Additional terms may apply. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING IF A PRODUCT IS SUITABLE FOR CUSTOMER'S PARTICULAR PURPOSE AND APPLICATION METHODS.

Technical information

The technical information, data, protocols, and other statements provided by Miltenyi Biotec in this document are based on information, tests, or experience which Miltenyi Biotec believes to be reliable, but the accuracy or completeness of such information is not guaranteed. Such technical information and data are intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. Miltenyi Biotec shall not be liable for any technical or editorial errors or omissions contained herein.

All information and specifications are subject to change without prior notice. Please contact Miltenyi Biotec Technical Support or visit www.miltenyibiotec.com for the most up-to-date information on Miltenyi Biotec products.

Licenses

This product and/or its use may be covered by one or more pending or issued patents and/or may have certain limitations. Certain uses may be excluded by separate terms and conditions. Please contact your local Miltenyi Biotec representative or visit Miltenyi Biotec's website at www.miltenyibiotec.com for more information.

The purchase of this product conveys to the customer the non-transferable right to use the purchased amount of the product in research conducted by the customer (whether the customer is an academic or for-profit entity). This product may not be further sold. Additional terms and conditions (including the terms of a Limited Use Label License) may apply.

CUSTOMER'S USE OF THIS PRODUCT MAY REQUIRE ADDITIONAL LICENSES DEPENDING ON THE SPECIFIC APPLICATION. THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING FOR ITSELF WHETHER IT HAS ALL APPROPRIATE LICENSES IN PLACE. Miltenyi Biotec provides no warranty that customer's use of this product does not and will not infringe intellectual property rights owned by a third party. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

Trademarks

autoMACS, MACS, MACSmix, MidiMACS, the Miltenyi Biotec logo, MiniMACS, OctoMACS, QuadroMACS, SuperMACS, and VarioMACS are registered trademarks or trademarks of Miltenyi Biotec and/or its affiliates in various countries worldwide. All other trademarks mentioned in this publication are the property of their respective owners and are used for identification purposes only.

Cy is a registered trademark of GE Healthcare UK Limited.

Copyright © 2021 Miltenyi Biotec and/or its affiliates. All rights reserved.

38 140-001-22202 140-001-22202 39