

Standardized and flexible eight-color flow cytometry panels harmonized between different laboratories to study human NK cell phenotype and function

Kalpana Singh¹, John P. Veluchamy^{2,3}, María Delso-Vallejo¹, Nina Kok³, Fenna Bohme³, Ruth Seggewiss-Bernhardt^{4,5}, Hans J. van der Vliet², Tanja D. de Gruijl², Volker Huppert¹, and Jan Spanholtz³ ¹Miltenyi Biotec GmbH, Bergisch Gladbach, Germany; ²Department of Medical Center, Cancer Center Amsterdam, The Netherlands; ³Glycostem Therapeutics, Oss, The Netherlands; ⁴Department of Hematology and Medical Oncology, University Hospital of Würzburg, Germany; ⁵Department of Hematology and Medical Oncology, Sozialstiftung Bamberg, Bamberg, Germany

Introduction

Advancements in flow cytometry led to the development of multicolor antibody panels, which have found application in numerous fields. However, comparability of data obtained from flow cytometry panels and protocols for data analysis will be NK cells within peripheral blood mononuclear cells (PBMCs). developed standardized flow cytometry panels and independently established acquisition protocols for three different flow cytometers (BD™ FACSCanto™ II, BD LSRFortessa™, and

MACSQuant[®] Analyzer 10), with compatible lasers and filter settings. Eight-color flow cytometry protocols were designed to study natural killer (NK) cell receptor phenotype and function different laboratories is still a major challenge. Harmonization of (e.g. antibody dependent cell mediated cytotoxicity (ADCC)) of essential to compare data from various centers. Therefore, we Using our established SOPs and harmonized flow cytometry panels, we compared the effects of freezing and thawing of PBMCs on NK cell phenotype and function.

Materials and methods

struments and reagents

Detectors	Filter settings: band pa	ss and long pass (LP) filters	PMT voltages			
	BD FACSCanto II	BD LSRFortessa	MACSQuant Analyzer 10	BD FACSCanto II	BD LSRFortessa	MACSQuant Analyzer 10
FSC	488/10	488/10	488/10	319	489	328
SSC	488 /10	488/10	488/10	462	266	476
FL1	530/30 and 502LP	530/30 and 505LP	525/50	496	484	417
FL2	585/42 and 556LP	575/26 and 550LP	585/40	435	473	416
FL3	780/60 and 735LP	780/60 and 750LP	750LP	540	549	487
FL4	670LP and 655LP	695/40 and 685LP	655–730	507	681	594
FL5	660/20	670/14 and 655LP	655–730	588	484	522
FL6	780/60 and 735LP	780/60 and 750LP	750LP	474	451	579
FL7	450/50	450/50	450/50	375	423	444
FL8	510/50 and 502LP	525/50 and 505LP	525/50	403	453	560

FL7	450/50		450/50	450/50	3	375	423	444			
FL8	510/50 and 502LP		525/50 and 505LP	525/50	Z	403	453	560			
Table 1 Instrument settings of the three different flow cytometers used in this study.											
Panel	Laser	Antibody	Fluorochrome	Clone	Titration	a	Manufacturer	Order no.			
raner	Violet 405 nm	CD45	VioGreen™	5B1	1:11	•	Miltenyi Biotec	130-096-906			
	violet 105 mili	CD3	VioBlue®	BW264/56	1:11		Miltenyi Biotec	130-094-363			
		TCRγ/δ	VioBlue	11F2	1:11		Miltenyi Biotec	130-101-557			
panel		CD14	VioBlue	TÜK4	1:11		Miltenyi Biotec	130-094-364			
ienotype pa		CD19	VioBlue	LT19	1:11		Miltenyi Biotec	130-098-598			
		SYTOX [®] Blue	Dead cell marker		1:1000		Thermo Fisher Scientific	S11348			
	Blue 488 nm	KIR2D	FITC	NKVFS1	1:11		Miltenyi Biotec	130-098-689			
NK pł		NKG2A	PE-Vio [®] 770	REA110	1:11		Miltenyi Biotec	130-105-647			
Z		NKG2C	PE	REA205	1:11		Miltenyi Biotec	130-103-635			
		NKG2D	PerCP-Cy™5.5	1D11	1:11		BioLegend	320818			
	Red 633 nm	CD16	APC	VEP13	1:11		Miltenyi Biotec	130-091-246			
		CD56	APC-Vio 770	REA196	1:11		Miltenyi Biotec	130-100-694			
NK function panel	Violet 405 nm	CD45	VioGreen	5B1	1:11		Miltenyi Biotec	130-096-906			
		CD14	VioBlue	TÜK4	1:11		Miltenyi Biotec	130-094-364			
		CD19	VioBlue	LT19	1:11		Miltenyi Biotec	130-098-598			
		SYTOX [®] Blue	Dead cell marker		1:1000		Thermo Fisher Scientific	S11348			
	Blue 488 nm	CD25	VioBright [™] FITC	4E3	1:11		Miltenyi Biotec	130-104-274			
		CD107a	PE	H4A3	1:11		Miltenyi Biotec	130-095-515			
		NKp44	PE-Vio 770	2.29	1:11		Miltenyi Biotec	130-104-195			
		CD3	PerCP-Vio 700	BW264/56	1:11		Miltenyi Biotec	130-097-582			
		CD3 TCRγ/δ	PerCP-Vio 700	11F2	1:11		Miltenyi Biotec	130-103-784			
	Red 633 nm	CD16	APC	VEP13	1:11		Miltenyi Biotec	130-091-246			
		CD16 CD56	APC APC-Vio 770	REA196	1:11		•	130-100-694			
Table	Antibodies detected bas					blue laser (indica	Miltenyi Biotec ated in light blue) represent the drop-in antigens				

itibodies detected based on the violet and red lasers (indicated in dark blue) represent the panel backbone, antibodies detected based on the blue laser (indicated in light blue) represent the drop-in antigens.

Results

are comparable between three flow cytometers

Compatible instrument settings and optimized protocols ments were analyzed using the pre-defined gating strategy with KALUZA[®] software. No significant differences could be observed resulted in comparable data sets as reflected by expression levels on single-stained cells for each backbone and drop-in antibetween centers, resulting in highly reproducible data sets for gen of the two panels. One representative set of histograms from the characterization of lymphocyte subsets and NK cell phenothree samples obtained from a single healthy donor is shown for type and function. This result provides a strong rationale for each antibody-fluorochrome conjugate tested using three dif- combining data sets for analysis in multicenter studies. ferent flow cytometers. Data collected from individual experi-

Additionally, we aimed to identify the most suitable conditions against A431 cells alone or coated with cetuximab antibody (CET) to study NK cell phenotype and function in a multicenter setting. Both freshly isolated and corresponding cryopreserved PBMC samples (n = 12) were either activated with cytokines (IL-2/IL-15) overnight or left untreated. NK cell phenotype and cytotoxicity

Conclusion and outlook

- cytometers were obtained using optimized 8-color flow cytometry panels for the analysis of NK cells.
- used to obtain novel phenotypic or functional information.
- on NK cell phenotype and function in multicenter trials. The presented NK flow cytometry panels set a precedent for
- immune cell types

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for therapeutic or diagnostic use. MACS, the MACS logo, MACSQuant, Vio, VioBlue, VioBright, and VioGreen are registered trademarks or trademarks of Miltenyi Biotec GmbH and/or its affiliates in various countries worldwide. All other trademarks mentioned in this document are the property of their respective owners and are used for identification purposes only. Copyright © 2017 Miltenyi Biotec GmbH and/or its affiliates. All rights reserved.

NK cell phenotypes and functions are highly preserved after cryopreservation

were similar in fresh and cryopreserved PBMCs, suggesting that the use of cryopreserved PBMCs is appropriate for NK cell studies in a multicenter setting.

• Channels corresponding to drop-in antigens can be flexibly • Cryopreserved PBMCs might be preferably used for studies future harmonization of multicolor panels focussed on other

This project was funded by the ITN EU project NaturImmun

