

Selected references

MACS® ART Annexin V System

Clinical data

2022

González-Ravina, C. et al. (2020) Effect of Sperm Selection by Magnetic-Activated Cell Sorting in D-IUI: A Randomized Control Trial. Cells 11(11): 1794. https://doi.org/10.3390/cells11111794

Deemeh, M. R. *et al.* (2022) Selecting motile, non-apoptotic and induced spermatozoa for capacitation without centrifuging by MACS-Up method. Andrologia 54(6): 14405. https://doi.org/10.1111/and.14405

El Fekih, S. *et al.* (2022) MACS-annexin V cell sorting of semen samples with high TUNEL values decreases the concentration of cells with abnormal chromosomal content: a pilot study. Asian J of Andrology 24(5): 445–450. https://doi.org/10.4103/aja202197

Mei, J. et al. (2022) Magnetic-activated cell sorting of nonapoptotic spermatozoa with a high DNA fragmentation index improves the live birth rate and decreases transfer cycles of IVF/ICSI. Asian J of Andrology 24(4): 367–372. https://doi.org/10.4103/aja202161

Norozi-Hafshejani, M. et al. (2022) MACS-DGC versus DGC Sperm Wash Procedure: Comparing Clinical Outcomes in Couples with Male Factor Infertility Undergoing ICSI: A Clinical Trial Study. Int J Fertil Steril 16(1): 17–22. https://doi.org/10.22074/IJFS.2021.532270.1139

2020

Losada, C. et al. (2020) Healthy baby born after ICSI with ejaculated immotile spermatozoa from a male Kartagener syndrome using Magnetic-Activated Cell Sorting (MACS) as a compliment of sperm preparation technique: A case report. Med Repr y Embr Clin 7(3): 98–106. https://doi.org/10.1016/j.medre.2020.10.002

Pacheco, A. *et al.* (2020) Magnetic-Activated Cell Sorting (MACS): A Useful Sperm-Selection Technique in Cases of High Levels of Sperm DNA Fragmentation. J Clin Med 9(12): 3976. https://doi.org/10.3390/jcm9123976 Hasanen, E. *et al.* (2020) PICSI vs. MACS for abnormal sperm DNA fragmentation ICSI cases: a prospective randomized trial. J Assisted Reproductive Genet 37(10): 2605–2613. https://doi.org/10.1007/s10815-020-01913-4

2019

Meringo Ruiy, M. *et.al.* (2019) The elimination of apoptotic sperm in IVF procedures and its effect on pregnancy rate. JBRA Assisted Reproduction 23(2): 112–116. https://doi.org/10.5935/1518-0557.20190007

Daneshmandpour, Y. (2019) The comparative effect of magnetic activated cell sorting, density gradient centrifugation and swim up on assisted reproduction outcomes, sperm DNA fragmentation, and aneuploidy: A systematic review and meta-analysis. Meta Gene 22: 100607. https://doi.org/10.1016/j.mgene.2019.100607

2018

Stimpfel, M. *et al.* (2018) Magnetic-activated cell sorting of non-apoptotic spermatozoa improves the quality of embryos according to female age: a prospective sibling oocyte study. J Assist Reprod Genet 35(9): 1665–1674. https://doi.org/10.1007/s10815-018-1242-1

Ješeta, M. *et al.* (2018) Magnetic-Activated Cell Sorting in Combination with Swim-Up Efficiency Improve Effectivity of Spermatozoa Separation.

Medical J of Cell Biology 6 (2): 55–60. https://sciendo.com/downloadpdf/journals/acb/6/2/article-p55.pdf

Zhang, H. et al. (2018) Selection of viable human spermatozoa with low levels of DNA fragmentation from an immotile population using density gradient centrifugation and magnetic-activated cell sorting. Andrologia 50(1). https://doi.org/10.1111/and.12821

Ziarati, N. *et al.* (2018) Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum. Fertil. 24: 1–8.

https://doi.org/10.1080/14647273.2018.1424354

2017

Esbert, A. *et al.* (2017) Spermatozoa with numerical chromosomal abnormalities are more prone to be retained by Annexin V-MACS columns. Andrology 5(4): 807–813. https://doi.org/10.1111/andr.12376

Berteli, T.S. *et al.* (2017) Magnetic-activated cell sorting before density gradient centrifugation improves recovery of high-quality spermatozoa. Andrology 5(4): 776–782. https://doi.org/10.1111/andr.12372

Sánchez-Martín, P. et al. (2017) Magnetic cell sorting of semen containing spermatozoa with high DNA fragmentation in ICSI cycles decreases miscarriage rate. Reprod Biomed Online 34(5): 506–512.

https://doi.org/10.1016/j.rbmo.2017.01.015

Romany, L. *et al.* (2017) Obstetric and perinatal outcome of babies born from sperm selected by MACS from a randomized controlled trial. J Assist Reprod Genet. 34(2): 201–207. https://doi.org/10.1007/s10815-016-0838-6

2016-2010

Chi, HJ. et al. (2016) Efficient isolation of sperm with high DNA integrity and stable chromatin packaging by a combination of density-gradient centrifugation and magnetic-activated cell sorting. Clin Exp Reprod Med. 43(4): 199–206. https://doi.org/10.5653/cerm.2016.43.4.199

Degheidy, T. et al. (2015) Magnetic activated cell sorting: an effective method for reduction of sperm DNA fragmentation in varicocele men prior to assisted reproductive techniques. Andrologia 47(8): 892–6. https://doi.org/10.1111/and.12343

Troya, J. et al. (2015) Annexin V-MACS in infertile couples as method for separation of sperm without DNA fragmentation. JBRA Assisted Reproduction 19(2): 66–69. https://doi.org/10.5935/1518-0557.20150015

Vendrell, X. et al. (2014) Correlation between aneuploidy, apoptotic markers and DNA fragmentation in spermatozoa from normozoospermic patients.

Reprod Biomed Online 28(4): 492–502.

https://doi.org/10.1016/j.rbmo.2013.12.001

Sheikhi, A. *et al.* (2013) Elimination of apoptotic spermatozoa by magnetic-activated cell sorting improves the fertilization rate of couples treated with ICSI procedure. Andrology 1(6): 845–9. *https://doi.org/10.1111/j.2047-2927.2013.00140.x*

Zahedi, A. *et al.* (2013) Zeta potential vs apoptotic marker: which is more suitable for ICSI sperm selection? J Assist Reprod Genet. 30(9): 1181–6. https://doi.org/10.1007/s10815-013-0022-1

Gil, M. et al. (2013) Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet. 30(4): 479–85. https://doi.org/10.1007/s10815-013-9962-8

Herrero, M.B. *et al.* (2012) Differential enrichment of sperm with no DNA strand breaks using magnetic activated cell sorting (MACS) in men with various categories of semen parameters. Human Reproduction 27 (suppl. 2): ii121–ii150. *https://doi.org/10.1093/humrep/27.s2.73*

San Celestino, M. *et al.* (2011) Improved pregnancy rate after sperm magnetic separation technique in egg donation cycles using frozen sperm samples.

Human Reproduction 26 (suppl. 1): i123–i148. https://doi.org/10.1093/humrep/26.s1.75

Khalid, S. N. *et al.* (2011) Pregnancy rate improves in couples with unexplained infertility following intrauterine insemination (IUI) with magnetically selected non-apoptotic sperms. Fertility and Sterility 96(3); S25. https://doi.org/10.1016/j.fertnstert.2011.07.104

Lee, T. H. *et al.* (2010) Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod. 25(4): 839–46. https://doi.org/10.1093/humrep/deq009

Young Obejero, E. *et al.* (2010) Reproductive outcome using Annexin V columns for non-apoptotic sperm selection. Hum Reprod. 25 (suppl. 1): i6–i9. https://doi.org/10.1093/humrep/de.25.s1.4

Romany, L. *et al.* (2010) Magnetic activated sorting of non-apoptotic sperm result in improved embryo quality in ovum donation cycles with intracytoplasmic sperm injection. Hum Reprod. 25 (suppl. 1): i6–i9. https://doi.org/10.1093/humrep/de.25.s1.4

<2010

Grunewald, S. et al. (2009) Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 92(2): 572–7. https://doi.org/10.1016/j.fertnstert.2008.07.1705

Dirican, E. K. *et al.* (2008) Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet. 25(8): 375–81. https://doi.org/10.1007/s10815-008-9250-1

Experimental data

2013-2012

Delbes, G. *et al.* (2013) The use of complimentary assays to evaluate the enrichment of human sperm quality in asthenoteratozoospermic and teratozoospermic samples processed with Annexin-V magnetic activated cell sorting Andrology. 1(5): 698–706.

https://doi.org/10.1111/j.2047-2927.2013.00106.x

<2010

De Vantéry Arrighi, C. et al. (2009) Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential. Reproductive Biology Endocrinology 7: 1. https://doi.org/10.1186/1477-7827-7-1

Aziz, N. et al. (2007) The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod. 22: 1413–1419. https://doi.org/10.1093/humrep/dem016

Grunewald, S. *et al.* (2006) Magnetic-activated cell sorting before cryopreservation preserves mitochondrial integrity in human spermatozoa. Cell and tissue Banking 7: 99–104. https://doi.org/10.1007/s10561-005-1367-1 Said, T. *et al.* (2006) Evaluation of sperm recovery following Annexin V magnetic-activated cell sorting separation. Reprod Biomed Online. 13(3): 336–9. https://doi.org/10.1016/s1472-6483(10)61437-x

Grunewald, S. *et al.* (2006) Capacitation and acrosome reaction in nonapoptotic human spermatozoa. Ann N Y Acad Sci. 1090: 138–146. https://doi.org/10.1196/annals.1378.015

Paasch, U. et al. (2005) Immunomagnetic removal of cryo-damaged human spermatozoa. Asian J Androl. 7(1): 61–9. https://doi.org/10.1111/j.1745-7262.2005.00009.x

Case studies

2020

Losada, C. et al. (2020) Healthy baby born after ICSI with ejaculated immotile spermatozoa from a male Kartagener syndrome using Magnetic-Activated Cell Sorting (MACS) as a compliment of sperm preparation technique:

A case report. Med Repr y Embr Clin 7(3): 98–106.

https://doi.org/10.1016/j.medre.2020.10.002

2015-2012

Lukaszuk, K. *et al.* (2015) First Pregnancy, Somatic and Psychological Status of a 4-Year-Old Child Born following Annexin V TESA Sperm Separation. AJP Rep. 5(2): e105–e108. https://doi.org/10.1055/s-0035-1548726

Herrero, M.B. *et al.* (2013) Case report: the use of annexin V coupled with magnetic activated cell sorting in cryopreserved spermatozoa from a male cancer survivor: healthy twin newborns after two previous ICSI failures.

J Assist Reprod Genet. 30(11): 1415–9.

https://doi.org/10.1007/s10815-013-0086-y

Losada, C. *et al.* (2012) Can MACS as a sperm preparation technique improve clinic results in patients with Kartagener syndrome? Hum Reprod. 27 (suppl. 2): ii162–ii205. https://doi.org/10.1093/humrep/27.s2.77

<2010

Polak de Fried, E. *et al.* (2010) Single and twin ongoing pregnancies in two cases of previous ART failure after ICSI performed with sperm sorted using Annexin V microbeads. Fertil Steril. 94(1): 351.e15–8.

https://doi.org/10.1016/j.fertnstert.2009.12.037

Rawe, V. Y. *et al.* (2010) Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 20(3): 320–3. https://doi.org/10.1016/j.rbmo.2009.12.004

Reviews and technical articles

Sharma, R. *et al.* (2015) Effect of sperm storage and selection techniques on sperm parameters.

Syst Biol Reprod Med. 61(1): 1–12.

https://doi.org/10.3109/19396368.2014.976720

Said, T. et al. (2011) Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum Reprod Update. 17(6): 719–33. https://doi.org/10.1093/humupd/dmr032

Said, T. *et al.* (2008) Utility of magnetic cell separation as a molecular sperm preparation technique.

Journal of Andrology 29: 134–142.

https://doi.org/10.2164/jandrol.107.003632

Grunewald, S. *et al.* (2013) Sperm selection for ICSI using Annexin V. Methods Mol Biol. 927: 257–62. https://doi.org/10.1007/978-1-62703-038-0_23

Learn more about the product at

► miltenyibiotec.com/macs-art-annexin-v-system

Miltenyi Biotec B.V. & Co. KG | Friedrich-Ebert-Straße 68 | 51429 Bergisch Gladbach | Germany | Phone +49 2204 8306-0 | Fax +49 2204 85197 macsde@miltenyi.com | www.miltenyibiotec.com

 $Miltenyi\ Biotec\ provides\ products\ and\ services\ worldwide.\ Visit\ www.miltenyibiotec.com/local\ to\ find\ your\ nearest\ Miltenyi\ Biotec\ contact.$

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for therapeutic or diagnostic use. The MACS ART Annexin V System is manufactured by Miltenyi Biotec B.V. & Co. KG according to an ISO 13485 certified quality system. These products are available in Europe as CE-marked medical devices. For availability in your country please contact your local representative. Not available for use in the USA. MACS and the Miltenyi Biotec logo are registered trademarks or trademarks of Miltenyi Biotec B.V. & Co. KG and/or its affiliates in various countries worldwide. Copyright © 2024 Miltenyi Biotec and/or its affiliates. All rights reserved.