

Anti-Sca-1 MicroBead Kit (Vio® Bright FITC)

mouse

Order no. 130-123-124

Contents

1. Description

- 1.1 Principle of the MACS® Separation
- 1.2 Background information
- 1.3 Applications
- 1.4 Reagent and instrument requirements

2. Protocol

- 2.1 Sample preparation
- 2.2 Magnetic labeling
- 2.3 Magnetic separation
- 3. Example of a separation using the Anti-Sca-1 MicroBead Kit (Vio Bright FITC)
- 4. References

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

1. Description

This product is for research use only.

Components 200 µL Anti-Sca-1-Vio Bright FITC, mouse:

monoclonal anti-mouse Sca-1 antibody conjugated

to Vio Bright FITC.

2 mL Anti-FITC MicroBeads:

MicroBeads conjugated to monoclonal anti-FITC

Isomer-1 antibody (isotype: mouse IgG1).

Capacity For 10⁹ total cells, up to 100 separations.

Product format All reagents are supplied in buffer containing

stabilizer and 0.05% sodium azide.

Storage Store protected from light at 2-8 °C. Do not freeze.

The expiration date is indicated on the vial label.

1.1 Principle of the MACS® Separation

First, the Sca-1⁺ cells are indirectly magnetically labeled with Anti-Sca-1-Vio Bright FITC antibodies and Anti-FITC MicroBeads. Then, the cell suspension is loaded onto a MACS[®] Column, which is placed in the magnetic field of a MACS Separator. The magnetically labeled Sca-1⁺ cells are retained within the column. The unlabeled cells run through; this cell fraction is thus depleted of Sca-1⁺ cells. After removing the column from the magnetic field, the magnetically retained Sca-1⁺ cells can be eluted as the positively selected cell fraction. To increase the purity, the positively selected cell fraction containing the Sca-1⁺ cells must be separated over a second column.

1.2 Background information

The Anti-Sca-1 MicroBead Kit (Vio Bright FITC) has been developed for the isolation of murine stem cells from bone marrow. Stem cell antigen-1 (Sca-1) is an 18 kDa GPI-linked surface protein of the Ly-6 family (Ly-6A/E). The anti-Sca-1 monoclonal antibody recognizes both Ly-6E.1 and Ly-6A.2, which are gene products of two Ly-6A/E alleles expressed in different mouse strains (e.g. BALB/c, C3H, NZB mice express only Ly-6E.1, while C57BL/6, SJL, 129, AKR express only Ly-6A.2). Hematopoietic stem cells in mouse bone marrow are defined as negative for lineage markers (lin⁻), and positive for Sca-1 and CD117 (c-kit). Long-term repopulating hematopoietic stem cells (LTR-HSCs) can be enriched by their expression of CD105+Sca-1+ using the CD105 MultiSort Kit (PE) in combination with the Anti-Sca-1 MicroBead Kit (Vio Bright FITC).

Sca-1⁺ stem cells have also been isolated from peripheral blood, fetal, and adult liver as well as heart and prostate tissue.

1.3 Applications

- Positive selection or depletion of cells expressing the mouse Sca-1 antigen.
- Isolation of Sca-1⁺ cells from murine bone marrow after depletion of so-called "lineage-positive" cells using the Lineage Cell Depletion Kit, mouse (# 130-090-858).
- Isolation of LTR-HSCs by subsequent separation of CD105+Sca-1+ cells using the CD105 MultiSort Kit (PE) in combination with the Anti-Sca-1 MicroBead Kit (Vio Bright FITC). A special protocol is available at www.miltenyibiotec.com.

1.4 Reagent and instrument requirements

Buffer: Prepare a solution containing phosphate-buffered saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA by diluting MACS BSA Stock Solution (#130-091-376) 1:20 with autoMACS* Rinsing Solution (#130-091-222). Keep buffer cold (2–8 °C). Degas buffer before use, as air bubbles could block the column.

▲ Note: EDTA can be replaced by other supplements such as anticoagulant citrate dextrose formula-A (ACD-A) or citrate phosphate dextrose (CPD). BSA can be replaced by other proteins such as mouse serum albumin, mouse serum, or fetal bovine serum (FBS). Buffers or media containing Ca²+ or Mg²+ are not recommended for use.

• MACS Columns and MACS Separators: Sca-1⁺ cells can be enriched by using MS, LS, or XS Columns. Positive selection can also be performed by using the autoMACS Pro Separator.

Column	Max. number of labeled cells	Max. number of total cells	Separator
Positive selection			
MS	10 ⁷	2×10 ⁸	MiniMACS, OctoMACS, VarioMACS, SuperMACS II
LS	10 ⁸	2×10 ⁹	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II
XS	10°	2×10 ¹⁰	SuperMACS II
autoMACS	2×10 ⁸	4×10 ⁹	autoMACS Pro

▲ Note: Column adapters are required to insert certain columns into the VarioMACS™ or SuperMACS™ II Separators. For details refer to the respective MACS Separator data sheet.

- (Optional) Fluorochrome-conjugated CD117 antibodies for flow cytometric analysis, e.g., CD117-PE. For more information about antibodies refer to www.miltenyibiotec.com/antibodies.
- (Optional) Propidium Iodide Solution (#130-093-233) or 7-AAD Staining Solution (#130-111-568) for flow cytometric exclusion of dead cells.
- (Optional) Dead Cell Removal Kit (# 130-090-101) for the depletion of dead cells.
- (Optional) CD105 MultiSort Kit (PE), mouse (# 130-092-924) for the enrichment of CD105+Sca-1+LTR-HSCs.
- (Optional) Lineage Cell Depletion Kit, mouse (# 130-090-858) for the depletion of lineage-committed cells.
- (Optional) Pre-Separation Filters (30 μm) (# 130-041-407) to remove cell clumps.

2. Protocol

2.1 Sample preparation

When working with tissues, prepare a single-cell suspension using the gentleMACS™ Dissociator.

For details refer to www.miltenyibiotec.com/gentlemacs.

▲ Dead cells may bind non-specifically to MACS® MicroBeads. To remove dead cells, we recommend using density gradient centrifugation or the Dead Cell Removal Kit (# 130-090-101)

Preparation of bone marrow cells

- ▲ All steps should be performed on ice.
- Collect murine bone marrow cells from femur (and tibias) by flushing the shaft with buffer using a syringe and a 26G needle.
- 2. Disaggregate cells by gentle pipetting them several times.
- 3. Pass cells through 30 μm nylon mesh (Pre-Separation Filters (30 μm), # 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use.
- Wash cells by adding buffer and centrifuge at 300×g for 10 minutes. Aspirate supernatant completely.
- Resuspend cell pellet in buffer and take an aliquot for cell counting.

2.2 Magnetic labeling

- ▲ Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.
- ▲ Volumes for magnetic labeling given below are for up to 10^7 total cells. When working with fewer than 10^7 cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10^7 total cells, use twice the volume of all indicated reagent volumes and total volumes).
- \blacktriangle For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through 30 μm nylon mesh (Pre-Separation Filters (30 μm), # 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use
- ▲ The recommended incubation temperature is 2–8 °C. Higher temperatures and/or longer incubation times lead to non-specific cell labeling. Working on ice may require increased incubation times.
- 1. Determine cell number.
- Centrifuge cell suspension at 300×g for 10 minutes. Aspirate supernatant completely.
- 3. Resuspend cell pellet in 98 μ L of buffer per 10^7 total cells.
- 4. Add 2 μL of Anti-Sca-1-Vio Bright FITC per 10⁷ total cells.
- 5. Mix well and incubate for 10 minutes in the refrigerator $(2-8 \, ^{\circ}\text{C})$.
- 6. Wash cells by adding 1-2 mL of buffer per 10^7 total cells and centrifuge at $300\times g$ for 10 minutes. Aspirate supernatant completely.
- 7. Resuspend cell pellet in 80 μ L of buffer per 10⁷ total cells.
- 8. Add 20 μL of Anti-FITC MicroBeads per 10⁷ total cells.
- 9. Mix well and incubate for 15 minutes in the refrigerator $(2-8 \, ^{\circ}\text{C})$.
- 10. Wash cells by adding 1-2 mL of buffer per 10^7 total cells and centrifuge at $300\times g$ for 10 minutes. Aspirate supernatant completely.
- 11. Resuspend up to 10^8 cells in 500 μ L of buffer.
 - ▲ Note: For higher cell numbers, scale up buffer volume accordingly.
- 12. Proceed to magnetic separation (2.3).

2.3 Magnetic separation

- ▲ Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of Sca-1⁺ cells. For details refer to the table in section 1.4.
- ▲ Always wait until the column reservoir is empty before proceeding to the next step.

Magnetic separation with MS or LS Columns

Place column in the magnetic field of a suitable MACS Separator.
For details refer to the respective MACS Column data sheet.

Prepare column by rinsing with the appropriate amount of buffer:

MS: 500 μL

LS: 3 mL

- Apply cell suspension onto the column. Collect flow-through containing unlabeled cells.
- Wash column with the appropriate amount of buffer. Collect unlabeled cells that pass through and combine with the flowthrough from step 3.

MS: 3×500 μL

LS: 3×3 mL

- ▲ Note: Perform washing steps by adding buffer aliquots as soon as the column reservoir is empty.
- Remove column from the separator and place it on a suitable collection tube.
- Pipette the appropriate amount of buffer onto the column. Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column.

MS: 1 mL

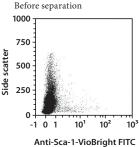
LS: 5 mL

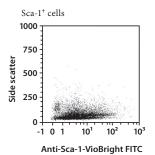
To increase the purity of Sca-1⁺ cells, the eluted fraction can be enriched over a second MS or LS Column. Repeat the magnetic separation procedure as described in steps 1 to 6 by using a new column.

Magnetic separation with XS Columns

For instructions on the column assembly and the separation, refer to the XS Column data sheet.

Magnetic separation with the autoMACS® Pro Separator


- ▲ Refer to the respective user manual for instructions on how to use the autoMACS® Pro Separator.
- ▲ Buffers used for operating the autoMACS Pro Separator should have a temperature of ≥10 °C.
- Prepare and prime the instrument. 1.
- Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube in row A of the tube rack and the fraction collection tubes in rows B and C.
- For a standard separation choose the following program:


Positive selection: Posseld2

Collect positive fraction in row C of the tube rack.

3. Example of a separation using the Anti-Sca-1 MicroBead Kit (Vio Bright FITC)

Sca-1+ cells were isolated from bone marrow cells from BALB/c mice using Anti-Sca-1 MicroBead Kit (Vio Bright FITC), two MS Columns, and a MiniMACS™ Separator. Cells were analyzed by flow cytometry using the MACSQuant® Analyzer. Cell debris and dead cells were excluded from the analysis based on scatter signals and propidium iodide fluorescence.

4. References

- Chen, C. Z. et al. (2002) Identification of endoglin as a functional marker that defines long-term repopulating hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 99: 15468-15473.
- Chen, C. Z. et al. (2003) The endoglin(positive) sca-1(positive) rhodamine(low) phenotype defines a near-homogeneous population of long-term repopulating hematopoietic stem cells. Immunity 19: 525-533.
- Lagasse, E. et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6: 1229-1234.
- Sanchez-Ramos, J. et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro, Exper. Neurol, 164: 247-256
- Yamada, M. et al. (2004) Bone marrow-derived progenitor cells are important for 5 lung repair after lipopolysaccharide-induced lung injury. J. Immunol. 172: 1266-
- Cherqui, S. et al. (2006) Isolation and angiogenesis by endothelial progenitors in the fetal liver. Stem cells 24: 44-54.
- Petersen, B. E. et al. (2003) Mouse A 6-positive hepatic oval cells also express several hematopoietic stem cell markers. Hepatology 37: 632-640.
- Matsuura, K. et al. (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. JBC 279: 11384-11391.
- Burger, P. E. et al. (2005) Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc. Natl. Acad. Sci. U S A 102: 7180-7185.

Refer to www.miltenyibiotec.com for all data sheets and protocols. Miltenyi Biotec provides technical support worldwide. Visit www.miltenyibiotec.com/local to find your nearest Miltenyi Biotec contact.

Legal notices

Limited product warranty

Miltenyi Biotec B.V. & Co. KG and/or its affiliate(s) warrant this product to be free from material defects in workmanship and materials and to conform substantially with Miltenyi Biotec's published specifications for the product at the time of order, under normal use and conditions in accordance with its applicable documentation, for a period beginning on the date of delivery of the product by Miltenyi Biotec or its authorized distributor and ending on the expiration date of the product's applicable shelf life stated on the product label, packaging or documentation (as applicable) or, in the absence thereof, ONE (1) YEAR from date of delivery ("Product Warranty"). Miltenyi Biotec's Product Warranty is provided subject to the warranty terms as set forth in Miltenyi Biotec's General Terms and Conditions for the Sale of Products and Services available on Miltenyi Biotec's website at www.miltenyibiotec.com, as in effect at the time of order ("Product Warranty"). Additional terms may apply. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING IF A PRODUCT IS SUITABLE FOR CUSTOMER'S PARTICULAR PURPOSE AND APPLICATION METHODS.

Technical information

The technical information, data, protocols, and other statements provided by Miltenyi Biotec in this document are based on information, tests, or experience which Miltenyi Biotec believes to be reliable, but the accuracy or completeness of such information is not guaranteed. Such technical information and data are intended for persons with knowledge and technical skills sufficient to assess and apply their own informed judgment to the information. Miltenyi Biotec shall not be liable for any technical or editorial errors or omissions contained herein.

All information and specifications are subject to change without prior notice. Please contact Miltenyi Biotec Technical Support or visit www.miltenyibiotec.com for the most up-to-date information on Miltenyi Biotec products.

Licenses

This product and/or its use may be covered by one or more pending or issued patents and/or may have certain limitations. Certain uses may be excluded by separate terms and conditions. Please contact your local Miltenyi Biotec representative or visit Miltenyi Biotec's website at www.miltenyibiotec.com for more information.

The purchase of this product conveys to the customer the non-transferable right to use the purchased amount of the product in research conducted by the customer (whether the customer is an academic or for-profit entity). This product may not be further sold. Additional terms and conditions (including the terms of a Limited Use Label License) may apply.

CUSTOMER'S USE OF THIS PRODUCT MAY REQUIRE ADDITIONAL LICENSES DEPENDING ON THE SPECIFIC APPLICATION. THE CUSTOMER IS SOLELY RESPONSIBLE FOR DETERMINING FOR ITSELF WHETHER IT HAS ALL APPROPRIATE LICENSES IN PLACE. Miltenyi Biotec provides no warranty that customer's use of this product does not and will not infringe intellectual property rights owned by a third party. BY USE OF THIS PRODUCT, THE CUSTOMER AGREES TO BE BOUND BY THESE TERMS.

Trademarks

autoMACS, gentleMACS, MACS, MACSQuant, MidiMACS, the Miltenyi Biotec logo, MiniMACS, OctoMACS, QuadroMACS, SuperMACS, VarioMACS, and Vio are registered trademarks or trademarks of Miltenyi Biotec and/or its affiliates in various countries worldwide.

Copyright © 2020 Miltenyi Biotec and/or its affiliates. All rights reserved.